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Abstract
The Kibble-Zurek mechanism (KZM) describes the non-equilibrium 
dynamics and the formation of topological defects in a system that is 
driven through a second-order phase transition. It has applications in 
condensed matter physics, cosmology, ultracold chemistry, and 
quantum computing. KZM is generally applicable only to 2nd-order 
phase transitions. In this work, we extend the applicability of KZM to 
1st-order phase transitions by integrating it with nucleation theory.
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KZM predicts the density of defects in 2nd-order phase transitions. 
According to the theory, the number of defects follows a power-law 
scaling with respect to the quench time scale        of spontaneous 
symmetry breaking.

Analogous weakly 1st-order quantum phase 
transition can be observed in conversion 
between atomic and molecular Bose-Einstein 
condensate with molecular-molecular 
interactions, by detuning the magnetic field 
through the Feshbach resonance. 

In this case as well, non-adiabatic excitations 
are sum of Kibble-Zurek scaling and 
contribution from 1st-order phase transitions.
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In contrast, in a 1st-order phase transition, both the old and new 
phases can coexist, and the transition occurs through a nucleation 
process, where the order parameter overcomes a barrier separating 
the two phases.
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The numerical results    agree with the 
analytical predictions       given by
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3 Nucleation Theory
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4 Classical Weakly 1st-Order Phase Transition
Halperin, Lubensky, and Ma demonstrated that transitions 
associated with superconductors or superfluids can exhibit weakly 
1st-order characteristics. This suggests that the order of the 
transition can be tuned between 2nd and 1st order, with weakly 1st-
order characteristics in between. Given the critical properties shared 
between liquid crystals and superconductors, the transitions in liquid 
crystals can also exhibit a weakly 1st-order nature. In high-energy 
physics, an analogous model occurs in the Coleman–Weinberg 
potential. 

A weakly 1st-order phase transition exhibits characteristics of both 
1st-order and 2nd-order transitions. It evolves similarly to 
spontaneous symmetry breaking, but nucleation can occur during 
the intermediate time.

In this case, we need to combine the Kibble-Zurek mechanism and 
nucleation theory. This can be done by summing the contributions 
from the Kibble-Zurek mechanism and nucleation theory using the 
Avrami equation.
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2nd-order transitions. However, it has become evident that many 
condensed matter systems, such as liquid crystals, exhibit a mixture 
of characteristics from both 1st- and 2nd-order phase transitions. 
Not only classical phase transitions, but also quantum phase 
transitions can exhibit weakly 1st-order behavior when complex 
systems with additional interactions are considered. 
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behavior. Our results open the door to exploring defect formation in 
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extending studies of non-adiabatic excitations in quantum simulators 
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